

EMBEDDED SOFTWARE DEVELOPMENT

LESSONS LEARNED
FROM FUNCTIONAL
SAFETY STANDARDS

Developing a robust embedded system when minimizing time to market is not an easy task. If

issues arise within an embedded solution after the rollout, they can be catastrophic and might

not be fixable without direct access to the devices. To avoid that, various practices need to be

established for the development process.

When developing safety critical systems functional safety standards are defined. There are

several standards to choose from – for example ISO26262 for road vehicles, IEC61508 for

different industries and DO-178B/DO-178C in avionics. However, for non-safety critical

product development, there is no universal approach in order to ensure product quality.

Using the full functional safety standards for non-safety critical embedded products is not

nescessary. Nevertheless, it makes sense to look into them when setting up design guidelines

to implement general approaches. In the following the important parts of the ISO26262

standard for road vehicles will be examined.

LESSONS LEARNED FROM FUNCTIONAL SAFETY STANDARDS…2

THE STRUCTURE OF ISO26262

ISO26262 outlines the whole lifecycle of the product development. It starts with the

management of functional safety and goes from concept phase over development and

supporting processes into production, operation and decommissioning.

Part 2 of the standard is the management part. It touches upon organizing the team to handle additional safety

topics properly and enhance development procedures. This part suggests that the project should have a person

responsible for the implementation of the relevant methodologies. This is usually the team lead, project manager or

the scrum master.

Part 3 refers to the concept phase and hazard and risk analysis, which is basically looking for possible bottlenecks

and troublemakers in the system. This is a part which also normally has to be done during initial requirements

analysis and development planning.

Parts 4, 5 and 6 detail the product development phases - system, hardware and software development,

respectively. Each system is assigned the safety grade, which will affect how many safety mechanisms have to be

implemented, while in normal development this is more of a common sense approach depending on what

robustness goals are set and how many resources have been allocated to achieve that.

Part 8 describes supporting processes, meaning selecting the right tools for the development tasks. This would be

picking toolchains, additional tools and frameworks for development as well as for verification and other means of

providing the software quality, deciding on the needed infrastructure.

The next paragraphs are focusing on interesting parts of the ISO standard and switch to commonly implemented

practices and recommendations.

DEVELOPMENT ORGANIZATION AND SUPPORTING
PROCESSES

At this point ISO26262 specifies the safety culture and organization, which is implemented through common

development practices.

1. DOCUMENTATION. Usually from the start of the project a set of initial documents, for example lining out

common and specific requirements, is present in some form. These and all other documents should be stored away

reliably and easily accessible for all the developers. This is a highly important issue: Throughout the whole

development process as much documentation as possible should take place. Meeting notes, feature and design

descriptions, flowcharts and dataflows – any script created for the project should be entered into a documenting

software (confluence, doxygen or any other suitable program) and kept for reference. An example for easy handling

is to include the generation of doxygen docs as one of the build targets and not allow a release if the description is

insufficient.

2. GENERAL PRACTICES. All of the processes should ideally be standardized and introduced from the very

beginning of the project, since it may require significant effort to change and adapt those during development.

Implemented practices should be aimed at catching a maximum amount of bugs at the compilation stage through

all kinds of tests, leaving less and less bugs for the next stages. The reason is that the price of testing activities

LESSONS LEARNED FROM FUNCTIONAL SAFETY STANDARDS…3

increases, compile time being the cheapest.

Choosing a development organization the popular approach nowadays is the agile way. It makes sense to discuss

and introduce additional conventions such as code reviews, establishing coding rules and guidelines, merging rules

and similar. Code review is usually mandatory, as it is very hard for one person to spot all potential issues. The

sources should be looked into by as many eyes as possible.

3. SYSTEM DESIGN. The system design takes place from the start of the project and then continues well into

development. It starts from the system architecture and proceeds for each feature to come. Features as well as

designs should be properly described and agreed between team members and the development plan should be the

resulting artifact. While making development plans it is necessary also to plan for testing, verification and validation

activities. Here come into play also such concepts as security by design, because the flaws on this stage might

result in great issues later.

4. BUILD SYSTEM, CI/CD. The key takeaway from this point is to not rely on manual builds. The integrated

development environment (IDE) provided by the chip manufacturer often is not the best choice, as it gives little

flexibility in automating the tasks described above. If possible, introducing a customized build system is

recommended, especially in larger projects. Nowadays, in the era of containers and quality management with easy

to set up backends, processes for Continuous Integration or Continous Deployment (CI/CD) should be included.

Even for small projects, the whole development cycle should be kept uniform and, based on some preconditions,

automated as far as possible. Preferably the environment is set up on a dedicated server.

Additional analysis tools are of great help – static and dynamic code analysis tools or code style checkers are

available in many variations, from commercial to open-source and free implementations. As these tools are easy to

include, they should be used as much as possible.

The means to provide delivery packages should be as automated as possible. As there will be a lot of software

testing, sometimes also with external companies, all participants should have access to the same tools and

information. Error detection as well as error resolution need to be fast: Tracking of issues, implementation of fixes

and similar tasks should have high priority and be easy to follow up on via continued documentation such as

needed logs or debugging information.

All in all, the methods that can be afforded should be implemented – many tools are available depending on the

language and project type but mostly as automated and effortless as possible. The easier it is to use the safety

ensuring mechanisms, the more effective they will be.

THE SOFTWARE DEVELOPMENT PROCESS

In this part ISO26262 covers types of

failures which are not relevant for normal

development processes. But also code

coverage, detecting issues in the code,

diagnostic capabilities, verification

methods and testing software is lined

out.

For preventing issues in the code, common

practices come into play. Some of them are also

outlined in ISO26262:

 A function should perform only one conceptual

task.

 Functions should be logically complete. If there is

a need to put the conjunction 'and' into the name

LESSONS LEARNED FROM FUNCTIONAL SAFETY STANDARDS…4

it is time to split it in two.

 There should be as little duplicate code as

possible. If a part of the code is repeated two or

more times, a separate function should be

created.

 At the header of the source no magical constants

should be declared as values.

 From the system as much output as possible

should be available. Even if it is not feasible to

store the logs, transparency of the system

behavior during testing and debugging is a must.

 All functions with outputs should be checked for

errors. Even if execution flow cannot recover from

the errors – any issue should always be visible in

logs or debug output.

In general close attention should be paid to dynamic

allocation areas. The common recommendation is to

limit the usage but if it is required, there are many tools

available to help monitor or at least check the heap

usage.

Besides these common practices, ISO26262

additionally outlines highly recommended principles,

that must be complied with. Basically they are the

same as the ones provided by MISRA-C:

 One entry and one exit point in functions

 No dynamic object or variables

 Initialization of all the variables

 No multiple use of variable names

 Avoid global variables or justify their usage

 Limited usage of pointers

 No implicit type conversions

 No hidden data flow or control flow

 No unconditional jumps

 No recursions

Further pieces of advice: Optimization should

be the last stage of development and only take place

where it has a significant effect.

Best practices should be easily addable – libraries and

standard approaches should be preferred over

customized ones.

A lot of code often can be reused from project to

project with little changes. The disadvantage of this is

that bugs migrate as well.

Debugging tools as well as hardware should be

available at an as early stage as possible, even if it will

not be the final hardware.

Lastly and most importantly: Security should always

be taken into account. In the GDPR era internal data

must be protected as widely as possible. This, among

other measures, means usage of security areas in the

chip, locking down the firmware, signing the firmware

packages used for updates. For the production build

normally as much output as possible is disabled.

However, if secure mechanisms for system status and

error reporting can be included, they should be.

TESTING

Testing is usually one of the largest parts of the development process. It is separated into

the general types Acceptance Testing, System Testing, Integration Testing and Unit testing.

For catching bugs as many cheap ways as possible should be used. To note here is the fact that the quality of

software increases with each level of testing.

CHALLENGES. Testing embedded software brings a number of challenges:

 Connectivity/no connectivity

 Observing internal states

 Developing special software applications for embedded systems - to provide stimulus and capture response

 Uniform solutions are usually not available and thus developed per case

 High level of hardware dependency; As software is often developed simultaneously with the hardware the

hardware is not immediately available

 Defects are harder to reproduce in embedded systems because there can be high levels of interconnections, for

example firmware dependencies on other parts of the systems. (Recommended solution: a part of the system can

IMAGE

LESSONS LEARNED FROM FUNCTIONAL SAFETY STANDARDS…5

be simulated, and a part can be postponed to later implementation)

ORGANIZATIONAL COUNTER ACTIONS. Test racks and test devices might be quite big or limited in

quantity and thus not always available for all team members. In that case, parallel work can be organized by

providing remote access to devices and coordinating time slots. It is also beneficial to have automated test setups.

In non safety critical systems focus on coverage does not need to be intense, but rather on identifying and covering

critical parts. Efforts should also go into making testing and debugging cycles shorter. This will allow catching more

errors and introducing more ways of testing. If possible, self-tests should be implemented. Various simulation-

based testing approaches – model-in-the-loop, hardware-in-the-loop, software-in-the-loop, processor-in-the-loop,

and so on – should be regarded. When making a release, generally smoke tests should be performed. Last but not

least testing can cover non functional testing aspects like security and load testing.

FURTHER READING

1. ISO26262 standard for functional safety

2. https://embeddedartistry.com/blog/2018/04/26/embedded-rules-of-thumb/

CONCEPT REPLY

Concept Reply is the software development partner of the Reply Group specialised in IoT innovation and offers solutions for i ts

customers in the areas of Smart Infrastructure, Industrial IoT and Connected Car from the idea through the concept phase to

implementation, operation and support. With around 50 IoT specialists, the range extends from implementation in the embedded

environment to gateway software or cloud applications.

